328456 (28)

BE (4 ${ }^{\text {th }}$ Semester)
Examination, Nov-Dec 2021
Branch : Et \& T
ELECTROMAGNETIC FIELDS \& TRANSMISSION LINES (NEW)

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note: (a) Part (a) of each question is compulsory.
(b) Attempt any two parts from (b), (c), (d).

Unit-I

Q. 1. (a) Define divergence of a vector and write the
expression associated with different co-
ordinate system ?
(b) Given point $P(-2,6,3)$ and vector $A=y a_{x}+$ $\left(x+{ }^{\prime} z\right) a_{y}$, express P and A in cylindrical coordinate system. 7
(c) Three equal point charges of $2 \mu \mathrm{C}$ are in free space at $(0,0,0),(2,0,0)$ and $(0,2,0)$, respectively. Find the net force on $Q_{4}=5 \mu \mathrm{C}$ at $(2,2,0)$.
(d) Three parallel line charges $P_{\mathrm{L} 1}=5 \mathrm{nC} / \mathrm{m}$, $P_{L 2}=4 \mathrm{nC} / \mathrm{m}$ and $P_{L 3}=-6 \mathrm{nC} / \mathrm{m}$ are located
at $(0,0),(3,0)$ and $(0,4) \mathrm{m}$, respectively. Find D and E :
Q. 2 .
(a) Define Gauss's law and mention its application for D at different charge distribution.

(3)

(b) An electric dipole represented by $0.1 \mathrm{a}_{\mathrm{y}}$ $\mathrm{nC}-\mathrm{m}$ is at origin. Find the potential at point ($0,10,0$). 7
(c) Consider concentric shells in free space in which $V=0$ Volts and $r=10 \mathrm{~cm}$ and $V=10$ Volts at $r=20 \mathrm{~cm}$. Find E and D. 7
(d) In a spherical region, the electric displacement is given by $D=10 r^{2} a_{r} \mathrm{mC} / \mathrm{m}^{2}$.

Find the total charge enclosed by the volume
specified by $r=40 \mathrm{~cm} \theta=\frac{\pi}{4}$ and $\phi=2 \pi .7$

Unit-III

Q. 3. (a) If a magnetic field $H=3 a_{x}+2 a_{y} A / m$ exists at a point in free space, what is the magnetic flux density at the point? 2
(b) Define Biot-Savart's law and derive the expression for magnetic field due to infinitely long current element:
(c) An electron has a velocity of $1 \mathrm{~km} / \mathrm{s}$ along a_{x}
in magnetic field whose magnetic flux density
is $B=0.2 a_{x}-0.3 a_{y}+0.5 a_{z} \mathrm{~Wb} / \mathrm{m}^{2}$.
7
(i) Determine the electric field intensity if no force is applied to the electron
(ii) Also find the force on the electron under
the influence of both E and B when $E=\left(a_{x}+a_{y}+a_{z}\right) k V / m$
(d) Two homogeneous, linear and ISO isotropic
media have an interface at $x=0 . x<0$
describes medium 1 and $x>0$ describes
medium 2. $\mu_{r_{1}}=2, \mu_{r_{2}}=5$. The magnetic field in medium 1 is $150 a_{x}-400 a_{y}+250 a_{z}$ A/m.

Calculate
(i) Magnetic field in medium 2
(ii) Magnetic flux density in medium 1

Unit-IV

Q. 4. (a) Define Faraday's law and write the Maxwell's equation derived from it.
(b) Given $E=10 \sin (w t-\beta z) a_{y} V / m$ in free space, determine D, B, H.
(c) Write the Maxwell's equation in time varying fields both in differential and integral form and also write its word statement.
(d) State and prove Poynting theorem.

(6)

Unit-V

Q. 5. (a) Define standing wave ration in transmission line and express its relation with reflection
coefficient.
(b) Derive an equation for transmission line
terminated by load impedance Z_{L}.
(c) Explain quarter wave transformer (matching)
technique in transmission line.
(d) A lossless transmission line of length 100 m
long has an inductance of $28 \mu \mathrm{H}$ and a
capacitance of 20 nF . Find :
7
(i) Propagation velocity
(ii) Phase constant at an operating
frequency of 100 kHz
(iii) Characteristic impedance of line

